# Simulation of Existing Water Distribution Network by using EPANET: A Case Study of Surat City

<sup>1</sup>Kakadiya Shital <sup>2</sup>Mavani Krunali <sup>3</sup>Darshan Mehta <sup>4</sup>Vipin Yadav

<sup>1,2</sup>U.G Student <sup>3,4</sup>Assistant Professor <sup>1,2,3,4</sup>Department of Civil Engineering <sup>1,2,3</sup>S.S.A.S.I.T, Surat, Gujarat, India <sup>4</sup>GEC, Rajkot, Gujarat, India

## Abstract

Water is the basic need of all living being of world. Demand of water is increase day by day. Water supply system is a system of engineered hydraulic and components which provide water supply. For the development of nation, water distribution network are very important for development of an area as they serve many purposes in addition to provision of water for human consumption. The water distribution network plays a virtual role in preserving and providing desirable life quality to the public, of which reliability of supply is the major component. It is difficult to provide safe water to the rural people in sufficient quantity, quality and at satisfactory pressure head with achieving economy constraint. EPANET software is used to design and analyze the multi village supply system with reference to technical sustainability. EPANET is computer program that performs extended period simulation of hydraulic behavior within pressurized pipe network. The study presents the hydraulic analysis of pipe line network of Punagam area near Surat city using EPANET 2.0. The area has 600.83 Ha area and 2, 22,252 Population (2016). Source supplies water to city by 109 junction having 144 Pipes divided in two different zones. The water from this source is taken via network of pipes to the GSR (Ground Services Reservoir) across the area. The water from these GSR is then pumped to the Adjacent ESRs (Elevated Storage Reservoirs) during the supply hours and water is supply to the area by gravity. Simulation has been carried out for hydraulic parameter such as had pressure and flow rate. The result obtained verified that the pressure at all junction and the flows with their velocities at all pipes are feasible enough to provide adequate water to the network of study area. The findings will help to understand the pipelines system of the study area in a better way. The study also deals with the future demand of the area.

Keyword- Elevation, EPANET 2.0, Nodes, Pipe Network, Pressure, Water Supply

# I. INTRODUCTION

Water distribution systems transfer water peak from the water source or treatment facility, to the point where it is forwarded to users. Water requirement is maximum during the hours that water is used for personal sanitation cleaning, and when food cooking and their clothes washing are done. Water use is least during the night.

Water distribution system, hydraulic infrastructure be contain in elements such as pipeline, tanks, basin, pumps and valve etc. is necessary to provide water to the consumers elements of a distribution system include distribution mains, arterial mains, storage basin and system elements (valves, hydrants, main line meters, service connections, and back flow preventers). Distribution main are the pipes that make up the distribution complex. Their purpose is to transmit water from water source or treatment work to users. Service connection that connect either other plumbing system or an individual building to distribution system mains.

Water distribution system consist of an inter connected series of pipelines storage facilities and elements that convey waters which is use for drinking and also meeting the fire protection needs for cities, schools, homes, hospitals, industries, businesses and other facilities.

It is required to preserve adequate pressure in the distribution system to defend it from contamination by the ingress of befoul seepage water. For small community provide a minimum pressure of 5-10(MWC-meter of water column) should be adequate in most examples.

#### A. Aim of the Study

To check the performance of Water Distribution Network of Punagam area of Surat city using hydraulic simulation software i.e. EPANET and to report any improvements required in existing network and the mode of operation, in order to improve the quantity and quality of water distributed to the users.

#### B. Objective of Study

- Study the existing water supply network of Punagam area of Surat city.
- To study pipe report and junction report of existing network.
- To analyze the data by using EPANET software.
- To check the discharge and pressure head in existing network.

# **II.** STUDY AREA

Surat is located on the western part of India in the state of Gujarat. Piped water supply system for the Surat City was started first time in year 1894 and first water works was setup at Varachha. Initially water was supplied through surface water from the River Tapti. Main source of water for Surat is the river Tapi flowing through the city. Surface water is drawn by intake wells from perennial channel of the river throughout the year.

Punagam area is located in East zone of Surat. The population of study area is 2, 22,252. The study area covers residential area about 600.83 Ha. When the water from the distribution network reaches to the Punagam area there is sudden decrease in the pressure head due to which water related problems arises. Leakages, failure of pipes and other factors are there which affects the water distribution network. Therefore it's required to analyse the existing network of the Punagam area using EPANET and compared computed result with actual result which is obtained from Surat Municipal Corporation. The water distribution system of Punagam area i.e. WDS-E3 consists of following five network systems namely ESR-E7, ESR-E8, ESR-E9, ESR-E9A, ESR-E10. In this paper, we have used WDS-E3-ESR-E10 data i.e pipe report as well as junction report for analysis.



Fig. 1: Map of Punagam Area, Surat City

#### A. Data Requirements

The data required for analysis of existing distribution network includes map of existing water distribution network, water distribution parameters such as Existing water demand, Surat population, and also distribution network parameters such as; elevations, pipe diameter and pipe length.

#### **III. OVERVIEW OF EPANET SOFTWARE**

EPANET is public domain software developed by the Water Supply and Water Resources Division of the U.S. Environmental Protection Agency's National Risk Management Research Laboratory (Rossman, 2000). EPANET provides an integrated environment for editing network input data, running hydraulic and water quality simulations, and viewing the results in a variety of formats. The hydraulic simulation performed by EPANET delivers information such as flows and head losses in links (pipes, pumps and valves), heads, pressures and demands at junctions, levels and volumes for water storage. This allows computing the pumping energy and cost. EPANET's computational engine is available also as a separate library (called the EPANET Toolkit) for incorporation into other applications. The network hydraulics solver employed by EPANET uses the Gradient Method, first proposed by Todini and Pilati (Todini and Pilati, 1988), which is a variant of Newton-Raphson method.

### **IV. HYDRAULIC MODELLING CAPABILITIES**

Full-featured and accurate hydraulic modeling is a prerequisite for doing effective water quality modeling. EPANET contains a state-of-the-art hydraulic analysis engine that includes the following capabilities:

- 1) Places no limit on the size of the network that can be analyzed
- 2) Computes friction head loss using the Hazen-William, Darcy-Weisbach or Chezy-Manning formula
- 3) Includes minor head losses for bends, fittings, etc.
- 4) Models constant or variable speed pumps
- 5) Computes pumping energy and cost
- 6) Models various types of valves including shutoff, check, pressure regulating, and flow control valves
- 7) Allows storage tanks to have any shape (i.e., diameter can vary with height)
- 8) Considers multiple demand categories at nodes, each with its own pattern of time variation
- 9) Models pressure-dependent flow issuing from emitters (sprinkler heads)
- 10) Can perform system operation on both simple tank level and timer controls and on complex rule-based controls.

Each network element has a hydraulic equation. For pipe equations, the Hazen-Williams formula is used (Brdys and Ulanicki, 1994). In the optimal scheduling problem it is required that all calculated variables satisfy the hydraulic model equations. The network equations are usually non-linear and are embedded as inequality and equality constraints in the optimization problem. The hydraulic model used by the FM optimization model consists of the following network equations:

- Flow continuity at connection nodes
- Mass-balance, average head and volume curve for reservoirs and elevated tanks
- Head-loss for pipes
- Head-loss for TCV valves
- check valves
- PRV valves
- pumping stations

#### A. Model Input Parameters

In order to analyze the WDN using EPANET following input data files are needed:

#### 1) Junction Report

Junctions are points in the network where links join together and where water enters or leaves the network.

The basic input data required for junctions are:

- 1) Elevation above some reference (usually mean sea level)
- 2) Water demand (rate of withdrawal from the network)
- 3) Initial water quality

The output results computed for junctions at all time periods of a simulation are:

- 1) Hydraulic head (internal energy per unit weight of fluid)
- 2) Pressure
- 3) Water quality

Junctions can also:

- Have their demand vary with time
- Have multiple categories of demands assigned to them
- have negative demands indicating that water is entering the network
- be water quality sources where constituents enter the network
- Contain emitters (or sprinklers) which make the outflow rate depend on the pressure

#### B. Pipe Report

Pipes are links that convey water from one point in the network to another. EPANET assumes that all pipes are full at all times. Flow direction is from the end at higher hydraulic head (internal energy per weight of water) to that at lower head.

The principal hydraulic input parameters for pipes are:

- 1) start and end nodes
- 2) diameter
- 3) length
- 4) roughness coefficient (for determining Head-loss)
- 5) Status (open, closed, or contains a check valve)

Computed outputs for pipes include:

- 1) flow rate
- 2) velocity
- 3) Head-loss
- 4) Darcy-Weisbach friction factor
- 5) average reaction rate (over the pipe length)
- 6) Average water quality (over the pipe length)

The hydraulic head lost by water flowing in a pipe due to friction with the pipe walls can be computed using one of three different formulas:

- 1) Hazen-Williams formula
- 2) Darcy-Weisbach formula
- 3) Chezy-Manning formula

The Hazen-Williams formula is the most commonly used head-loss formula in the US. It cannot be used for liquids other than water and was originally developed for turbulent flow only. The Darcy-Weisbach formula is the most theoretically correct. It applies over all flow regimes and to all liquids. The Chezy-Manning formula is more commonly used for open channel flow. Each formula uses the following equation to compute head-loss between the start and end node of the pipe:

 $h_{L=}Aq^{B}$ 

Where,  $h_L$ = head-loss (Length), q = flow rate (Volume/Time), A = resistance coefficient, and B = flow exponent. Table 1 lists expressions for the resistance coefficient and values for the flow exponent for each of the formulas. Each formula uses a different pipe roughness coefficient that must be determined empirically.

| Formula                                            | Resistance coefficien                                               | t (a) Flow expone | nt (b) |  |  |  |  |  |  |  |  |
|----------------------------------------------------|---------------------------------------------------------------------|-------------------|--------|--|--|--|--|--|--|--|--|
| Hazen-Williams                                     | Hazen-Williams 4.727c <sup>-1.852</sup> d <sup>-4.781</sup> L 1.852 |                   |        |  |  |  |  |  |  |  |  |
| Darcy-Weisbach $0.0252f(\varepsilon,d,q)d^{-5}L$ 2 |                                                                     |                   |        |  |  |  |  |  |  |  |  |
| Chezy-Manning                                      |                                                                     |                   |        |  |  |  |  |  |  |  |  |
| Notes:                                             |                                                                     |                   |        |  |  |  |  |  |  |  |  |
| c = Hazen-Willian                                  | is roughness coefficien                                             | ıt                |        |  |  |  |  |  |  |  |  |
| $\varepsilon = Darcy$ -Weisba                      | ch roughness coefficie                                              | nt (ft)           |        |  |  |  |  |  |  |  |  |
| f = friction factor                                | (dependent on ε, d, and                                             | l(q)              |        |  |  |  |  |  |  |  |  |
| n = Manning roug                                   | n = Manning roughness coefficient                                   |                   |        |  |  |  |  |  |  |  |  |
| $d = pipe \ diameter$                              | $d = pipe \ diameter \ (ft)$                                        |                   |        |  |  |  |  |  |  |  |  |
| $L = pipe \ length \ (ft)$                         | )                                                                   |                   |        |  |  |  |  |  |  |  |  |
| $q = flow \ rate \ (cfs)$                          |                                                                     |                   |        |  |  |  |  |  |  |  |  |
| Table 1: Pipe Head-loss formula for full flow      |                                                                     |                   |        |  |  |  |  |  |  |  |  |
| Material                                           | Hazen Williams C                                                    | Darcy-Weisbach    | Man    |  |  |  |  |  |  |  |  |
| Cast Iron                                          | 130-140                                                             | 0.85              | 0.012  |  |  |  |  |  |  |  |  |

| Hazen Williams C | Darcy-Weisbach                                  | Manning's                                                                        |
|------------------|-------------------------------------------------|----------------------------------------------------------------------------------|
| 130-140          | 0.85                                            | 0.012 - 0.015                                                                    |
| 120-140          | 1.0-1.0                                         | 0.012 - 0.017                                                                    |
| 120              | 0.5                                             | 0.015 - 0.017                                                                    |
| 140-150          | 0.005                                           | 0.011 - 0.015                                                                    |
| 140-150          | 0.15                                            | 0.015 - 0.017                                                                    |
| 110              |                                                 | 0.013 – 0.015                                                                    |
|                  | 130-140<br>120-140<br>120<br>140-150<br>140-150 | 130-140 0.85   120-140 1.0-1.0   120 0.5   140-150 0.005   140-150 0.15   110 10 |

Table 2: Roughness Coefficient for new pipe

Pipes can be set open or closed at preset times or when specific conditions exist, such as when tank levels fall below or above certain set points, or when nodal pressures fall below or above certain values.

# V. METHODOLOGY

Following steps has been carried out to model a water distribution network using EPANET:

- 1) Step 1: Draw a network representation of your distribution system or import a basis description of the network placed in a text file.
- 2) Step 2: Edit the properties of the objects that make up the system. It includes editing the properties and entering of the required data in various objects like reservoir, pipes, nodes or junctions, etc.

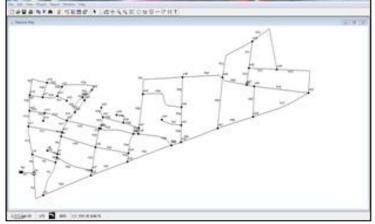



Fig. 2: WDS E3 ESR-E10

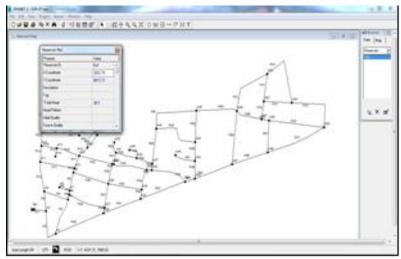



Fig. 3: Reservoir Property Editor

- 3) Step 3: Describe how the system is operated.
- 4) Step 4: Select a set of analysis options.

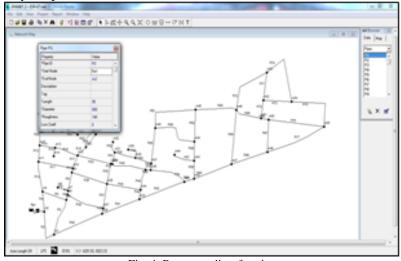



Fig. 4: Property editor for pipe

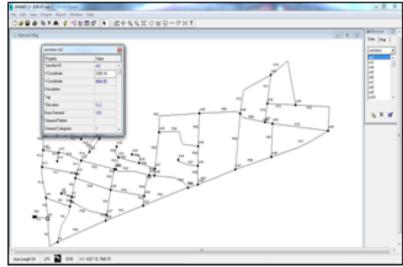



Fig. 5: Property editor for Junction

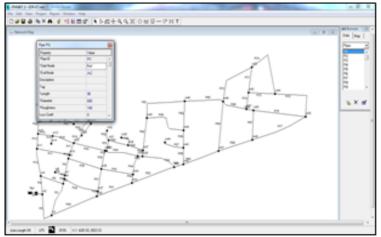



Fig. 6: Selection of type of Analysis

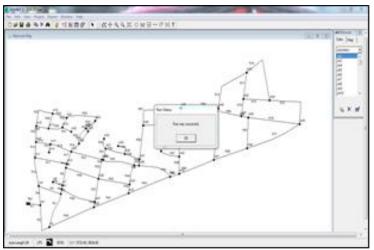



Fig. 7: Running of Analysis

#### A. WDS ESR E10

The network diagram of WDS ESR E10 drawn in EPANET is shown in figure 7.

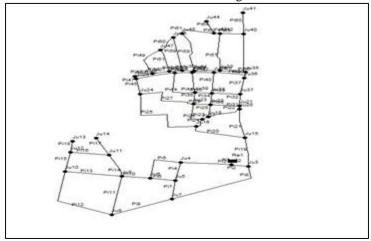



Fig. 8: Network Diagram of WDS ESR E10

#### B. Junction Report (WDS ESR E10)

It includes 47 junctions. The result obtained using EPANET is presented in table. The error between actual pressure and pressure computed by EPANET is also shown in table. Pressure profile for WDS ESR E10 is shown in below table.

|           | Network Table - Nodes | rk Table - Nodes |               |   |           | etwork Table - Nodes | 1             | -             |  |
|-----------|-----------------------|------------------|---------------|---|-----------|----------------------|---------------|---------------|--|
| Node ID   | Elevation             | Demand<br>LPS    | Pressure<br>m | ^ | Node ID   | Elevation<br>m       | Demand<br>LPS | Pressure<br>m |  |
| Junc Ju2  | 12.5                  | 0.81             | 23.97         |   | June Ju25 | 11.1                 | 10.31         | 20.15         |  |
| June Ju3  | 12.2                  | 3.69             | 23.95         |   | June Ju26 | 11.1                 | 0.74          | 20.15         |  |
| Junc Ju4  | 11.7                  | 6.06             | 23.74         |   | Junc Ju27 | 11.7                 | 2.79          | 19.58         |  |
| June Ju5  | 12.7                  | 4.29             | 21.69         |   | June Ju28 | 12.4                 | 2.62          | 19.06         |  |
| June Ju6  | 12.8                  | 11.73            | 20.88         |   | Junc Ju29 | 12.4                 | 11.31         | 19.38         |  |
| Junc Ju7  | 14                    | 19.80            | 19.65         |   | June Ju30 | 12.4                 | 2.04          | 19.57         |  |
| Junc Ju8  | 12.1                  | 3.87             | 20.57         |   |           |                      |               |               |  |
| June Ju9  | 12.7                  | 18.27            | 19.90         |   | June Ju31 | 125                  | 5.74          | 19.78         |  |
| June Ju10 | 13.8                  | 22.71            | 17.41         |   | June Ju32 | 12.5                 | 8.72          | 19.60         |  |
| Junc Ju11 | 11.8                  | 5.40             | 19.62         |   | June Ju33 | 12.75                | 4.15          | 19.96         |  |
| June Ju12 | 12.5                  | 9.87             | 18.63         |   | June Ju34 | 12.75                | 10.57         | 19.81         |  |
| Junc Ju13 | 11.6                  | 2.70             | 19.51         |   | June Ju35 | 12.74                | 0.78          | 20.79         |  |
| Junc Ju14 | 12.1                  | 4.32             | 19.24         |   | Junc Ju36 | 12.74                | 5.09          | 20.93         |  |
| June Ju15 | 11.7                  | 6.63             | 23.59         |   | June Ju37 | 10.68                | 3.01          | 23.59         |  |
| June Ju16 | 11.4                  | 9.04             | 21.42         |   | June Ju38 | 10.67                | 7.55          | 22.06         |  |
| Junc Ju17 | 11.2                  | 2.33             | 21.62         |   | June Ju39 | 10.8                 | 5.38          | 21.52         |  |
| Junc Ju18 | 11                    | 1.26             | 21.97         |   | June Ju40 | 12.69                | 10.11         | 19.39         |  |
| June Ju20 | 10.75                 | 13.00            | 23.84         |   | Junc Ju41 | 11.38                | 5.64          | 20.56         |  |
| Junc Ju21 | 10.75                 | 0.91             | 23.78         |   | June Ju42 | 12.3                 | 13.94         | 19.15         |  |
| Junc Ju22 | 10.85                 | 7.97             | 21.99         |   | June Ju43 | 12.25                | 7.97          | 19.07         |  |
| Junc Ju23 | 10.9                  | 7.91             | 21.50         |   | June Ju44 | 11.2                 | 3.18          | 20.09         |  |
| June Ju24 | 12.83                 | 27.87            | 18.37         | ~ | June Ju45 |                      |               |               |  |
|           |                       |                  |               |   |           | 11.1                 | 10.28         | 20.41         |  |
|           |                       |                  |               |   | Junc Ju46 | 11.1                 | 12.74         | 20.13         |  |
|           |                       |                  |               |   | June Ju47 | 11.2                 | 13.29         | 20.01         |  |

Table 3: Junction Report for WDS E3 ESR 10

#### C. Pipe Report (WDS ESR E10)

Pipe report of WDS ESR-E10 includes 77 pipes. The result obtained using EPANET software for WDS ESR-E10 is presented in table. The error between actual flow and flow computed using EPANET software is shown in table. The error between actual head loss & head loss computed EPANET software is also shown in below figure.

| Network Table - Linka |        |               |           |             |                 |                | Netwo     | ork Table - I | links           |           |             |                 |                |
|-----------------------|--------|---------------|-----------|-------------|-----------------|----------------|-----------|---------------|-----------------|-----------|-------------|-----------------|----------------|
| Link ID               | Length | Daneter<br>mm | Roughness | Flow<br>LPS | Velocity<br>m/s | Unit Headoot n | Lek D     | Length        | Diameter<br>min | Roughness | Plan<br>UPS | Velucity<br>m/s | Und Headhirs A |
| Pipe P/I              |        | 700           | 140       | 345.39      | 0.91            | 0.90           | Pipe Pi23 | 70            | 150             | 143       | 12.90       | 0.73            | 3.69           |
| Pipe PQ               | 126    | 500           | 140       | 253.49      | 1.28            | 2.61           | Pipe PQ4  | 72            | 150             | 140       | 0.12        | 0.01            | 0.00           |
| Pipe PG               | 206    | 300           | 140       | 94.09       | 1.33            | 5.00           | Ppe PQS   | 521           | 150             | 140       | 11.75       | 0.67            | 311            |
| Pipe Pil              | 14     | 250           | 140       | 70.65       | 1.44            | 7.18           | Pipe PGS  | 160           | 150             | 140       | 10.45       | 0.59            | 2.50           |
| Pipe Pd               | 278    | 150           | 140       | 17.22       | 0.97            | 8.77           | Ppe P27   | 229           | 150             | 140       | 12.61       | 0.71            | 354            |
| Pipe Pili             | 121    | 200           | 140       | 25.27       | 1.12            | 5.07           | Pipe P20  | 90            | 150             | 140       | 7.47        | 0.42            | 1.34           |
| Ppe PV                | 759    | 200           | 14)       | 31.25       | 0.99            | 4.67           | Pipe Pi29 | 76            | 150             | 140       | 16.29       | 0.92            | 5.69           |
| Pipe Fill             | 515    | 150           | 140       | 14.90       | 0.05            | 4.04           | Pipe PO0  | 149           | 150             | 140       | 23.79       | 1.95            | 11.47          |
| Pipe Pill             | 301    | 200           | 140       | 26.25       | 0.64            | 3,43           | Pice Pút  | 29            | 450             | 140       | 122.94      | 1.09            | 214            |
| Pipe P/0              | 132    | 200           | 140       | 40.79       | 1.30            | 7.67           | Pipe Pil2 |               | #00             | 140       | 149.24      | 1.18            | 2.06           |
| Pipe Pil1             | 314    | 150           | 140       | -2.67       | 0.18            | 0.23           | Pipe P33  | 144           | 150             | 143       | 22.00       | 1.29            | 10.68          |
| Pipe Pit2             | 611    | 150           | 140       | 10.94       | 0.62            | 272            | Pipe PO4  | 10            | 150             | 140       | 7.00        | 0.40            | 1.19           |
| Pipe Pd3              | 281    | 150           | 140       | 16.09       | 0.91            | 5.56           | Pipe P35  | 76            | 150             | 140       | 15.00       | 0.90            | 5.43           |
| Pipe Pili4            | 104    | 110           | 140       | 17.97       | 1.02            | 6.02           | Pipe PG6  | 90            | 150             | 140       | 4.22        | 0.75            | 0.96           |
| Pipe Pits             | 553    | 110           | 140       | 4.32        | 0.24            | 0.49           | Pipe P07  | 557           | 350             | 140       | 122.35      | 1.27            | 3.14           |
| Pipe Phili            | 127    | 110           | 140       | 125         | 0.47            | 1.61           | Pipe PGB  | 24            | 300             | 140       | 90.75       | 1.40            | 5,47           |
| Pere Pit ?            | 147    | 150           | 140       | 432         | 0.24            | 0.49           | Pipe P(3) | 154           | 150             | 140       | 10.51       | 1.05            | 7.21           |
| Pipe Pitta            | 92     | 150           | 140       | 270         | 0.15            | 0.20           | Pipe PM0  | 172           | 150             | 140       | 6.44        | 0.36            | 1.02           |
| Pipe Pi73             | 226    | 450           | 140       | 234.07      | 3.48            | 3.78           | Pipe PM1  | 169           | 150             | 140       | 7.36        | 0.42            | 1.31           |
| Pipe P30              | 279    | 150           | 140       | 20.67       | 1.12            | 8.84           | Ppe PA2   | 101           | 150             | 140       | 14.00       | 0.01            | 4.52           |
| Pipe Pi21             | 232    | 450           | 140       | 207.97      | 1.31            | 3.01           | Pipe Pik3 | 10            | 150             | 140       | 13.02       | 0.74            | 3.76           |
| Pipe Pi22             | 163    | 150           | 140       | 21.67       | 1.22            | 942 🗸          | Ppe P44   | 354           | 150             | 140       | 3.37        | 0.53            | 2.04           |

Table 4: Pipe Report for WDS E3 ESR 10



Fig. 9: Pressure Profile of WDS ESR E10

Following are some finding of above study

- The total numbers of junction are 47.
- The pressure is computed using Hazen-William approach.
- For WDS-ESR-E10 jn-2,jn-3,jn-4,jn-5,jn-6,jn-7,jn-8,jn-9,jn-11,jn-12,jn-15,jn-17,jn-18,jn-20,jn-21,jn-22,jn-27,jn-30,jn-31,jn-32,jn-33,jn-34,jn-35,jn-36,jn-37,jn-41 junction gives negative pressure.
- There is fluctuation in the pressure head.

## **D.** Result Analysis of Junction Report

| Label | Press                    | % Error |          |  |  |  |  |  |
|-------|--------------------------|---------|----------|--|--|--|--|--|
| Lubei | Actual                   | EPANET  | 70 Error |  |  |  |  |  |
| Jn2   | 24                       | 23.97   | -0.0003  |  |  |  |  |  |
| Jn3   | 24                       | 23.95   | -0.0005  |  |  |  |  |  |
| Jn4   | 24                       | 23.74   | -0.0026  |  |  |  |  |  |
| -     | -                        | -       | -        |  |  |  |  |  |
| -     | -                        | -       | -        |  |  |  |  |  |
| Jn17  | 22                       | 21.62   | -0.0038  |  |  |  |  |  |
| Jn18  | 22                       | 21.97   | -0.0003  |  |  |  |  |  |
| Jn20  | 24                       | 23.84   | -0.0016  |  |  |  |  |  |
| Jn21  | 24                       | 23.78   | -0.0022  |  |  |  |  |  |
| -     | -                        | -       | -        |  |  |  |  |  |
| -     | -                        | -       | -        |  |  |  |  |  |
| Jn44  | 20                       | 20.09   | 0.0009   |  |  |  |  |  |
| Jn45  | 20                       | 20.41   | 0.0041   |  |  |  |  |  |
|       | Table 5: Junction Report |         |          |  |  |  |  |  |

# E. Result Analysis of Pipe Report

| Labal | Flo    | w(L/s) | Veloc  | city(m/s)     | Head loss<br>Gradient(m/km) |        |  |
|-------|--------|--------|--------|---------------|-----------------------------|--------|--|
|       | Actual | EPANET | Actual | Actual EPANET |                             | EPANET |  |
| Pil   | 348.4  | 348.39 | 0.91   | 0.91          | 0.912                       | 0.91   |  |
| Pi2   | 253.5  | 253.49 | 1.29   | 1.29          | 2.606                       | 2.61   |  |
| -     | -      | -      | -      | -             | -                           | -      |  |
| -     | -      | -      | -      | -             | -                           | -      |  |
| Pi16  | 8.25   | 8.25   | 0.47   | 0.47          | 1.616                       | 1.61   |  |
| Pil7  | 4.32   | 4.32   | 0.24   | 0.24          | 0.487                       | 0.49   |  |
| -     | -      | -      | -      | -             | -                           | -      |  |
| -     | -      | -      | -      | -             | -                           | -      |  |
| Pi50  | 9.68   | 9.69   | 0.55   | 0.55          | 2.168                       | 2.18   |  |
| Pi51  | -7.55  | 7.57   | 0.43   | 0.43          | 1.37                        | 1.38   |  |

| -                    | -     | -     | -    | -    | -     | -    |  |
|----------------------|-------|-------|------|------|-------|------|--|
| -                    | -     | -     | -    | -    | -     | -    |  |
| Pi63                 | 15.41 | 15.39 | 0.87 | 0.87 | 5.134 | 5.12 |  |
| Pi64                 | 3.18  | 3.18  | 0.18 | 0.18 | 0.276 | 0.28 |  |
| Table 6. Dine Demont |       |       |      |      |       |      |  |

## Table 6: Pipe Report

## **VI.** CONCLUSIONS

The main focused of study is to analyze the water distribution network and identify deficiencies in its analysis, implementation and its usage. At the end of the analysis it was found that the resulting pressure at all junction and the flows with their velocities at all pipes are adequate enough to provide water to study area. This study would help the water supply engineers in saving time as it this process is fast and less tedious. Discharge should be increase to achieve the base demand.

#### REFERENCES

- [1] Blaszczyk, J., Karbowski, A., Krawczyk, K., Malinowski, K., and Allidina, A. (2012a). "Optimal pump scheduling for large scale water transmission system by linear programming," 2012(3):91–96.
- [2] Gessler, J.,"Optimization of pipe networks, Proc. of the Ninth International. Symposium on Urban Hydrology, Hydraulics and Sediment Control", Univ. of Ky., Lexington, July 27-30, 1982.
- [3] Wood, D.J. (1980). "User's Manual Computer Analysis of Flow in Pipe Networks Including extended Period Simulations", Department of Civil Engineering, University of Kentucky, Lexington, KY
- [4] Jeppson, R. W., and A. L. Davis, (1976). "Pressure Reducing Valves in pipe Network Analysis," ASCE Journal of the Hydraulic Division, 102(HY7):987.
- [5] Sajedkhan S. Pathan, Dr. U. J. Kahalekar. "Design of Optimal Water Supply Network and Its Water Quality Analysis by using WaterGEMS," International Journal of Science and Research, 2013, pp. 311-317.
- [6] Janki H. Vyas, Narendra J. Shrimali , Mukesh A. Modi. "Optimization of Dhrafad Regional Water supply scheme using EPANET." International Journal of Innovative Research in Science, Engineering & Technology, 2013, Vol. 2(10), pp. 5768-5773.
- [7] Ishani Gupta, Dr. R. K. Khitoliya, Dr. Shakti Kumar. "Study of Water Distribution Network using EPANET." International Journal of Computational Engineering Research, 2013, Vol. 3(6), pp. 58-6.
- [8] Urmi Parikh, B. M. vadher, Dr. P. G. Agnihotry. "Study of Water Distribution Pipe Network using EPANET 2.0." Global Journal for Research Analysis, 2014, Vol. 3(4), pp. 214-216.