Footstep Power Generation

Mr. Vishwanil V. Sarnaik

UG Student Department of Mechanical Engineering SCOE, Vadgaon, Pune-41

Mr. Akshay S. Jidge

UG Student Department of Mechanical Engineering SCOE, Vadgaon, Pune-41 Mr. Akshay P. Karnewar

UG Student Department of Civil Engineering SCOE, Vadgaon, Pune-41

Mr. Tejas P. Pawar

UG Student Department of Mechanical Engineering SCOE, Vadgaon, Pune-41

Abstract

Energy crisis is a major concern in today's world. As the demand of energy is increasing day by day, so the ultimate solution to deal with these sorts of problems is just to implement the renewable sources of energy. The objective of footstep power generation project is to abstract renewable energy. If this project is installed in highly dense areas such as railway stations, clubs, parks etc. then maximum amount of energy can be abstracted from it. By simply walking on footpath, electricity is generated. Also we are adding piezoelectric crystal on the platform of the footstep to increase power output. This project consists rack and pinion assembly as a driving mechanism. In this project, force energy is converted into electrical energy. The control mechanism consists of the rack & pinion, D.C generator, battery and inverter control. We have discussed the various applications and further extension also. So this project is implemented to all foot step, the power generation is very high.

Keywords- Piezo-Electric, DC Generator, Rack, Pinion, springs, Gear

I. INTRODUCTION

This process involves number of simple setup that is installed under the walking platform. When people walk on this platform their body weight is utilized to rotate pinion through rack. Pinion is connected to dynamo which ultimately produce electricity. And while the power producing platform is over crowded with moving population, energy is produced at larger levels. Greater movement of people will generate more energy. This work will be great invention if energy wasted through walking is utilized properly. Generally, great amount of such renewable energy is available at highly dense places.

Mechanical energy is converted into electrical energy with the help of rack and pinion assembly. When a person claims the stair case, a force has been acted on the step which has been placed at a certain angle of inclination. When force is applied, rack which is connected to step moves down and rotates the pinion. This rotational speed has been increased using Chain and sprocket drive.

II. CONSTRUCTION

When a person climbs or get down a step, he pushes a step down, thus producing impact force or thrust force. This impact pressure energy can be utilized to operate the DC motor through bi-directional rack and pinion arrangement and piezoelectric transducer. The impact force applied by the human generates vibrational energy which is utilized for to-fro motion of rack. It then converts this linear motion into circular motion of pinion, which rotates the shaft connected to it. DC motor attached to the other side of shaft converts this mechanical energy into electrical energy.

Simultaneously, 12 Piezo-electric transducers connected in series and 2 such series in parallel are installed on the top of MS plate converts vibrational energy into electrical energy. This energy is further stored in the battery.

III. CALCULATION

SPRING CALCULATION

Specification: (standard values are considered here from net) δ=190-11=75mm Material=steel wire Ultimate tensile strength=1090 N/mm² Modulus of rigidity=81370 N/mm² Permissible shear stress for spring wire should be 50% of ultimate tensile strength. We are finding the following values: Wire diameter.(d) Mean coil diameter.(D) Number of active coil.(N) Total number of coils. Free length of spring. Pitch of the coil. P=63.....(assume 65kg) $\delta = 75 \text{ mm}$ C=6. G=81370 N/mm² T=0.5 Sut Wire diameter: The permissible shear stress is; $\iota = 0.5 \times Sut$ Sut=1090 N/mm² $= 0.5 \times 1090$ $\iota = 545 \ N/mm^2$ $K = \frac{4c-1}{c-1} + \frac{0.615}{c-1}$ $\frac{\mathbf{K} - \frac{1}{4\mathbf{c} + 4} + \frac{1}{4\mathbf{c} + 4}}{\frac{4 \times 6 - 1}{4\mathbf{c} + 1} + \frac{0.615}{4\mathbf{c} + 1}}$ = 4×6+4 6 k=1.2525 $T = k \times \frac{9 \times P \times c}{\pi \times d^2}$ 8×638×6 545=1.2525× $\pi \times d^2$ d =4.546=5mm where . d=wire diameter Di=inside diameter Do=outside diameter D=mean coil diameter Mean coil diameter: D=c×d $=6\times5$ D=30 mm Number of active coil: $\delta = \frac{8 \times P \times D^3 \times N}{2}$ G×d^4 $50 = \frac{8 \times 638 \times 30^3 \times N}{50}$ 81370×5^4 N=18 Total number of turns: It is assumed that the spring to spur and gear end. The number of inactive coils is 2. N₁=N+2=18+2=20

5.Free length of spring: The actual deflection of spring is: $\delta = \frac{8 \times P \times D^3 \times N}{2}$ G×d^4 8×638×30³×18 $\delta =$ 81370×5^4 $\delta = 48.78 \text{ mm}$ 6. Solid length of spring. It is assumed that here will be gap of between Consecutive coils which spring is subjected to Maximum force. Total number of coils is 18. Axial gap $(N1_1) = N-1 = (18-1) \times 1 = 17 \text{ mm}$ Free length = solid length + axial gap+ δ (solid length = $N1 \times d= 20 \times 5 = 100$) = 100 + 17 + 49Free length = 166 mm7.Pitch of coil: $P = \frac{freelength}{freelength}$ N1-1 166 = 18-1 P = 9.76 mm**RACK AND PINION:** Nomenclature: $f_t = transmitted$ force $f_n = normal force$ f_r = resultant force θ = pressure angle Pressure angle = 20° 1. Fr = Ft tan θ(1) f_t = tangential force (weight of human = 65kg) $f_t = 65 \times 9.81$ $f_t = 637.65 \text{ N}$ $f = 637.65 \text{ x} \tan 20... \text{ using equation (1)}$ $f_r = 232.02 N$ 2. $F_n = \frac{f_t}{\cos \theta}$ (2) = 637.65 cos 20 $F_n = 678.57 \text{ N}$ 3.Power $P = \frac{Work}{time}.....(3)$ Forcexdisplacement $\mathbf{P} =$ time 637.65 × 0.050 $\mathbf{P} =$ P = 31.88 watt 4.Power $P = \frac{2\pi NT}{m} \dots \dots (4)$ 60 Px 60 T = 2πxN 31.88 x 60 $T = \frac{31.00 \text{ m} \text{ m}}{2 \text{ x } 3.142 \text{ x } 30}$ T = 9.3 N.m.

$5.T = f_t x r \dots (5)$	
$r = \frac{T}{c}$	
¹ t 9.3	
$=\frac{1}{637.65}$	
r = 0.015	
r = 15 mm So D = 30 mm	
6. Using Lewis form factor:	
$\sigma_t = \frac{14\pi a}{v.b}$ (6)	
Let,	
P_d = diametrical pitch	
$P_{d} = \frac{T}{T}$ (7)	
18	
$-\frac{30}{30}$	
$= 0.6 \text{ mm}^{-1}$	
I nen,	
$\sigma_t = \frac{\tau_t \alpha_{d}}{v_{tb}}$ using equation(6)	
$=\frac{588.6 \times 0.6}{100}$	
30×0.308 $\sigma = 38.22 \text{ N/mm}^2$	
$\frac{S_1 - S_2 + S_1}{S_1 - S_2} $	
$7. \text{ O}_{\text{allow}} = \frac{1}{\text{fos}} \frac{1}{210}$	
$=\frac{210}{2}$	
$\sigma_{allow} = 105 N/mm^2$	
So $\sigma_t \ll \sigma_{allow}$	
So design is safe.	
$8.m = \frac{D}{T} \dots (9)$	
$=\frac{30}{1}$	
$\frac{18}{m-1.66}$	
Then the module of pinion -1.66	
Also The module of rack = 1.66	

IV. MAXIMUM ENERGY INDICATION GRAPH (POWER VS HUMAN WEIGHT)

V. COST ESTIMATION

Money is important factor in any project. While installing any project, its cost has to be estimated. If cost of project is less, then ultimately its cost of electricity generation is reduced. Operation cost of footstep power generation system is nearly equal to zero. Life of this system is approximately equal to 10⁶ load cycles (for 65 Kg work load). Only operational and maintenance is associated with this system. Cost of electricity generated per unit watt is very low.

A. Per Unit Cost Estimation

Power generated by each model :	
$=\frac{1\times10^{6}}{66666.67}$	
= 15MW	
Cost required per unit kilo-Watt = $\frac{6250}{15 \times 1000}$	
= 0.41667 Rs/KW	
? = = = =	

B. Cost Estimation Table

Table 1: cost estimation table				
SR NO.	COMPONENT	DETAILS	COST IN RS.	
1.	Base plate and upper plate	Mild steel -300×300 mm (300×2)	1000	
2.	Fixed Cylindrical pipes	MS pipes, 30mmdia100mm length (100×4)	400	
3.	Moving pipes	MS pipes,20 mm dia. 100 mm length (100×4)	400	
4.	Springs	Alloy Steel Wire(100×4)	400	
5.	Stair frame	MS l angle frame	1000	
6.	Rack and pinion	Cast iron, module 1.5	1100	
7.	DC motor	12 volt,60 rpm	250	
8.	Fabrication	Cutting, welding etc.	600	
9.	Assembly	Mounting, fixing motor shaft with pinion. Adjusting rack and pinion etc. and final welding	500	

VI. CONCLUSION

Footstep power generation system produces electricity by utilizing energy which is wasted through walking. Mechanism like rack and pinion and piezo-electric material are integrated to produce desired output. Cost of electricity generation solely depends upon

the initial cost, maintenance cost and life of system. Maximum advantage of this system can be taken if installed in highly dense area.

REFERENCES

- [1] Bhandari, V. B. Design of Machine Elements. 1st ed. New Delhi: McGraw-Hill Education (India), 2017. Print.
- [2] Maitra, Gitin M.Handbook of Gear Design. 1st ed. New Delhi: McGraw-Hill, 2001.
- [3] Kiran Boby, Aleena Paul K, Anumol. C.V, Josnie Ann Thomas, Nimisha K.K."Footstep Power Generation Using Piezoelectric Transducer"- International Journal of Engineering and Innovative Technology, vol.3, Issue 10, April 2014.
- [4] ANSI-IEEE 176 (1987) Standard on Piezoelectricity